========================================================================== Ubuntu Security Notice USN-6134-1 June 01, 2023 linux-intel-iotg-5.15 vulnerabilities ========================================================================== A security issue affects these releases of Ubuntu and its derivatives: - Ubuntu 20.04 LTS Summary: Several security issues were fixed in the Linux kernel. Software Description: - linux-intel-iotg-5.15: Linux kernel for Intel IoT platforms Details: It was discovered that the Traffic-Control Index (TCINDEX) implementation in the Linux kernel did not properly perform filter deactivation in some situations. A local attacker could possibly use this to gain elevated privileges. Please note that with the fix for this CVE, kernel support for the TCINDEX classifier has been removed. (CVE-2023-1829) It was discovered that the Traffic-Control Index (TCINDEX) implementation in the Linux kernel contained a use-after-free vulnerability. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2023-1281) It was discovered that the OverlayFS implementation in the Linux kernel did not properly handle copy up operation in some conditions. A local attacker could possibly use this to gain elevated privileges. (CVE-2023-0386) It was discovered that some AMD x86-64 processors with SMT enabled could speculatively execute instructions using a return address from a sibling thread. A local attacker could possibly use this to expose sensitive information. (CVE-2022-27672) Zheng Wang discovered that the Intel i915 graphics driver in the Linux kernel did not properly handle certain error conditions, leading to a double-free. A local attacker could possibly use this to cause a denial of service (system crash). (CVE-2022-3707) Haowei Yan discovered that a race condition existed in the Layer 2 Tunneling Protocol (L2TP) implementation in the Linux kernel. A local attacker could possibly use this to cause a denial of service (system crash). (CVE-2022-4129) It was discovered that the network queuing discipline implementation in the Linux kernel contained a null pointer dereference in some situations. A local attacker could use this to cause a denial of service (system crash). (CVE-2022-47929) It was discovered that the NTFS file system implementation in the Linux kernel contained a null pointer dereference in some situations. A local attacker could use this to cause a denial of service (system crash). (CVE-2022-4842) Kyle Zeng discovered that the IPv6 implementation in the Linux kernel contained a NULL pointer dereference vulnerability in certain situations. A local attacker could use this to cause a denial of service (system crash). (CVE-2023-0394) Jordy Zomer and Alexandra Sandulescu discovered that syscalls invoking the do_prlimit() function in the Linux kernel did not properly handle speculative execution barriers. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2023-0458) Jordy Zomer and Alexandra Sandulescu discovered that the Linux kernel did not properly implement speculative execution barriers in usercopy functions in certain situations. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2023-0459) It was discovered that the Human Interface Device (HID) support driver in the Linux kernel contained a type confusion vulnerability in some situations. A local attacker could use this to cause a denial of service (system crash). (CVE-2023-1073) It was discovered that a memory leak existed in the SCTP protocol implementation in the Linux kernel. A local attacker could use this to cause a denial of service (memory exhaustion). (CVE-2023-1074) It was discovered that the TLS subsystem in the Linux kernel contained a type confusion vulnerability in some situations. A local attacker could use this to cause a denial of service (system crash) or possibly expose sensitive information. (CVE-2023-1075) It was discovered that the Reliable Datagram Sockets (RDS) protocol implementation in the Linux kernel contained a type confusion vulnerability in some situations. An attacker could use this to cause a denial of service (system crash). (CVE-2023-1078) Xingyuan Mo discovered that the x86 KVM implementation in the Linux kernel did not properly initialize some data structures. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2023-1513) It was discovered that the NFS implementation in the Linux kernel did not properly handle pending tasks in some situations. A local attacker could use this to cause a denial of service (system crash) or expose sensitive information (kernel memory). (CVE-2023-1652) It was discovered that a race condition existed in the io_uring subsystem in the Linux kernel, leading to a use-after-free vulnerability. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2023-1872) It was discovered that the Android Binder IPC subsystem in the Linux kernel did not properly validate inputs in some situations, leading to a use- after-free vulnerability. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2023-20938) It was discovered that the ARM64 EFI runtime services implementation in the Linux kernel did not properly manage concurrency calls. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2023-21102) It was discovered that a use-after-free vulnerability existed in the iSCSI TCP implementation in the Linux kernel. A local attacker could possibly use this to cause a denial of service (system crash). (CVE-2023-2162) Lianhui Tang discovered that the MPLS implementation in the Linux kernel did not properly handle certain sysctl allocation failure conditions, leading to a double-free vulnerability. An attacker could use this to cause a denial of service or possibly execute arbitrary code. (CVE-2023-26545) It was discovered that the NET/ROM protocol implementation in the Linux kernel contained a race condition in some situations, leading to a use- after-free vulnerability. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2023-32269) Duoming Zhou discovered that a race condition existed in the infrared receiver/transceiver driver in the Linux kernel, leading to a use-after- free vulnerability. A privileged attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2023-1118) Update instructions: The problem can be corrected by updating your system to the following package versions: Ubuntu 20.04 LTS: linux-image-5.15.0-1030-intel-iotg 5.15.0-1030.35~20.04.1 linux-image-intel 5.15.0.1030.35~20.04.22 linux-image-intel-iotg 5.15.0.1030.35~20.04.22 After a standard system update you need to reboot your computer to make all the necessary changes. ATTENTION: Due to an unavoidable ABI change the kernel updates have been given a new version number, which requires you to recompile and reinstall all third party kernel modules you might have installed. Unless you manually uninstalled the standard kernel metapackages (e.g. linux-generic, linux-generic-lts-RELEASE, linux-virtual, linux-powerpc), a standard system upgrade will automatically perform this as well. References: https://ubuntu.com/security/notices/USN-6134-1 CVE-2022-27672, CVE-2022-3707, CVE-2022-4129, CVE-2022-47929, CVE-2022-4842, CVE-2023-0386, CVE-2023-0394, CVE-2023-0458, CVE-2023-0459, CVE-2023-1073, CVE-2023-1074, CVE-2023-1075, CVE-2023-1078, CVE-2023-1118, CVE-2023-1281, CVE-2023-1513, CVE-2023-1652, CVE-2023-1829, CVE-2023-1872, CVE-2023-20938, CVE-2023-21102, CVE-2023-2162, CVE-2023-26545, CVE-2023-32269 Package Information: https://launchpad.net/ubuntu/+source/linux-intel-iotg-5.15/5.15.0-1030.35~20.04.1