Chrome: Type confusion in JSPromise::TriggerPromiseReactions VULNERABILITY DETAILS ==1. TriggerPromiseReactions== https://cs.chromium.org/chromium/src/v8/src/objects.cc?rcl=d24c8dd69f1c7e89553ce101272aedefdb41110d&l=5975 Handle JSPromise::TriggerPromiseReactions(Isolate* isolate, Handle reactions, Handle argument, PromiseReaction::Type type) { DCHECK(reactions->IsSmi() || reactions->IsPromiseReaction()); // We need to reverse the {reactions} here, since we record them // on the JSPromise in the reverse order. { DisallowHeapAllocation no_gc; Object current = *reactions; Object reversed = Smi::kZero; while (!current->IsSmi()) { Object next = PromiseReaction::cast(current)->next(); // ***1*** PromiseReaction::cast(current)->set_next(reversed); reversed = current; current = next; } reactions = handle(reversed, isolate); } [...] A Semmle query has triggered a warning that |TriggerPromiseReactions| performs a typecast on the |reactions| argument without prior checks[1]. Upon further inspection, it turned out that the JSPromise class reuses a single field to store both the result object and the reaction list (chained callbacks). Moreover, |JSPromise::Fulfill| and |JSPromise::Reject| don't ensure that the promise is still in the \"pending\" state, instead they rely on the default |resolve/reject| callbacks that are exposed to user JS code and use the |PromiseBuiltins::kAlreadyResolvedSlot| context variable to determine whether the promise has been resolved yet. So, it's enough to call, for example, |JSPromise::Fulfill| twice on the same Promise object to trigger the type confusion. ==2. Thenable objects and JSPromise::Resolve== https://cs.chromium.org/chromium/src/v8/src/objects.cc?rcl=d24c8dd69f1c7e89553ce101272aedefdb41110d&l=5902 MaybeHandle JSPromise::Resolve(Handle promise, Handle resolution) { [...] // 8. Let then be Get(resolution, \"then\"). MaybeHandle then; if (isolate->IsPromiseThenLookupChainIntact( Handle::cast(resolution))) { // We can skip the \"then\" lookup on {resolution} if its [[Prototype]] // is the (initial) Promise.prototype and the Promise#then protector // is intact, as that guards the lookup path for the \"then\" property // on JSPromise instances which have the (initial) %PromisePrototype%. then = isolate->promise_then(); } else { then = JSReceiver::GetProperty(isolate, Handle::cast(resolution), isolate->factory()->then_string()); // ***2*** [...] This is a known behavior, and yet it has already caused some problems in the past (see https://bugs.chromium.org/p/chromium/issues/detail?id=663476#c10). When the promise resolution is an object that has the |then| property, |Resolve| synchronously accesses that property and might invoke a user-defined getter[2], which means it's possible to run user JavaScript while the promise is in the middle of the resolution process. However, just calling the |resolve| callback inside the getter is not enough to trigger the type confusion because of the |kAlreadyResolvedSlot| check. Instead, one should look for places where |JSPromise::Resolve| is called directly. ==3. V8 extras and ReadableStream== https://cs.chromium.org/chromium/src/third_party/blink/renderer/core/streams/ReadableStream.js?rcl=d67a775151929f516380749eae3b32f514eade11&l=425 function ReadableStreamTee(stream) { const reader = AcquireReadableStreamDefaultReader(stream); let closedOrErrored = false; let canceled1 = false; let canceled2 = false; let reason1; let reason2; const cancelPromise = v8.createPromise(); function pullAlgorithm() { return thenPromise( ReadableStreamDefaultReaderRead(reader), ({value, done}) => { if (done && !closedOrErrored) { if (!canceled1) { ReadableStreamDefaultControllerClose(branch1controller); // ***3*** } if (!canceled2) { ReadableStreamDefaultControllerClose(branch2controller); } closedOrErrored = true; } [...] function cancel1Algorithm(reason) { canceled1 = true; // ***4*** reason1 = reason; if (canceled2) { const cancelResult = ReadableStreamCancel(stream, [reason1, reason2]); resolvePromise(cancelPromise, cancelResult); } return cancelPromise; } [...] function ReadableStreamCancel(stream, reason) { stream[_readableStreamBits] |= DISTURBED; const state = ReadableStreamGetState(stream); if (state === STATE_CLOSED) { return Promise_resolve(undefined); } if (state === STATE_ERRORED) { return Promise_reject(stream[_storedError]); } ReadableStreamClose(stream); const sourceCancelPromise = ReadableStreamDefaultControllerCancel(stream[_controller], reason); return thenPromise(sourceCancelPromise, () => undefined); } function ReadableStreamClose(stream) { ReadableStreamSetState(stream, STATE_CLOSED); const reader = stream[_reader]; if (reader === undefined) { return; } if (IsReadableStreamDefaultReader(reader) === true) { reader[_readRequests].forEach( request => resolvePromise( request.promise, ReadableStreamCreateReadResult(undefined, true, request.forAuthorCode))); reader[_readRequests] = new binding.SimpleQueue(); } resolvePromise(reader[_closedPromise], undefined); } A tiny part of Blink (namely, Streams API) is implemented as a v8 extra, i.e., a set of JavaScript classes with a couple of internal v8 methods exposed to them. The relevant ones are |v8.resolvePromise| and |v8.rejectPromise|, as they just call |JSPromise::Resolve/Reject| and don't check the status of the promise passed as an argument. Instead, the JS code around them defines a bunch of boolean variables to track the stream's state. Unfortunately, there's a scenario in which the state checks could be bypassed: 1. Create a new ReadableStream with an underlying source object that exposes the stream controller's |stop| method. 2. Call the |tee| method to create a pair of child streams. 3. Make a read request for one of the child streams thus putting a new Promise object to the |_readRequests| queue. 4. Define a getter for the |then| property on Object.prototype. From this point every promise resolution where the resolution object inherits from Object.prototype will call the getter. 5. Call |cancel| on the child stream. The call stack will eventually look like: ReadableStreamCancel -> ReadableStreamClose -> resolvePromise -> JSPromise::Resolve -> the |then| getter. 6. Inside the getter, calling regular methods on the child stream won't work because its state is already set to \"closed\", but an attacker can call the controller's |stop| method. Because |ReadableStreamClose| is executed before the cancel callback[4], the |cancel1| flag won't be set yet, so the |close| method will be called again[3] resolving the promise that is currently in the middle of the resolution process. The only problem here is the code [3] gets executed as another promise's reaction, i.e. as a microtask, and microtasks are supposed to be executed asynchronously. ==4. MicrotasksScope== V8 exposes the MicrotasksScope class to Blink to control microtask execution. MicrotasksScope's destructor will run all scheduled microtasks synchronously, if the object that's being destructed is the top-level MicrotasksScope. Therefore, calling a Blink method that instantiates a MicrotasksScope should allow running the scheduled promise reaction[3] synchronously. However, usually all JS code ( ==5. Exploitation== The bug allows an attacker to make the browser treat the object of their choice as a PromiseReaction. If the second qword of the object contains a value that looks like a tagged pointer, |TriggerPromiseReactions| will treat it as a pointer to another PromiseReaction in the reaction chain and try to reverse the chain. This primitive is not very useful without a separate info leak bug. If the second qword looks like a Smi, the method will overwrite the first, third and fourth qwords with tagged pointers. So, if the attacker allocates a HeapNumber and a FixedDobuleArray that are adjacent to each other, and the umber's value has its LSB set to 0, the function will overwrite the array's length with a pointer that looks like a sufficiently large Smi. The array's map pointer will also get corrupted, but that's not important (at least, for release builds). ----------------------------------------------------------------- | HeapNumber || FixedDoubleArray | ----------------------------------------------------------------- | Map | Value || Map | Length | Element 0 | ... | ----------------------------------------------------------------- Once the attacker has the relative read/write primitive, it's easy to construct the pointer leak and arbitrary read/write primitives by finding the offsets of a couple other objects allocated next to the array. Finally, to execute the shellcode the exploit overwrites the jump table of a WebAssembly function, which is stored in a RWX memory page. Exploit (the shellcode runs gnome-calculator on linux x64): VERSION Google Chrome 72.0.3626.96 (Official Build) (64-bit) Google Chrome 74.0.3702.0 (Official Build) dev (64-bit) This bug is subject to a 90 day disclosure deadline. After 90 days elapse or a patch has been made broadly available (whichever is earlier), the bug report will become visible to the public. Found by: glazunov@google.com