exploit the possibilities
Home Files News &[SERVICES_TAB]About Contact Add New

KETAMINE: SecureRandom() Weakness

KETAMINE: SecureRandom() Weakness
Posted Apr 13, 2018

A significant number of past and current cryptocurrency products contain a JavaScript class named SecureRandom(), containing both entropy collection and a PRNG. The entropy collection and the RNG itself are both deficient to the degree that key material can be recovered by a third party with medium complexity.

tags | advisory, javascript
SHA-256 | cc8297ecfb188d758f4988f1504a6ab94dbdf9629620e6bbeea4587c06e4ec1c

KETAMINE: SecureRandom() Weakness

Change Mirror Download
A significant number of past and current cryptocurrency products
contain a JavaScript class named SecureRandom(), containing both
entropy collection and a PRNG. The entropy collection and the RNG
itself are both deficient to the degree that key material can be
recovered by a third party with medium complexity. There are a
substantial number of variations of this SecureRandom() class in
various pieces of software, some with bugs fixed, some with additional
bugs added. Products that aren't today vulnerable due to moving to
other libraries may be using old keys that have been previously
compromised by usage of SecureRandom().


The most common variations of the library attempts to collect entropy
from window.crypto's CSPRNG, but due to a type error in a comparison
this function is silently stepped over without failing. Entropy is
subsequently gathered from math.Random (a 48bit linear congruential
generator, seeded by the time in some browsers), and a single
execution of a medium resolution timer. In some known configurations
this system has substantially less than 48 bits of entropy.

The core of the RNG is an implementation of RC4 ("arcfour random"),
and the output is often directly used for the creation of private key
material as well as cryptographic nonces for ECDSA signatures. RC4 is
publicly known to have biases of several bits, which are likely
sufficient for a lattice solver to recover a ECDSA private key given a
number of signatures. One popular Bitcoin web wallet re-initialized
the RC4 state for every signature which makes the biases bit-aligned,
but in other cases the Special K would be manifest itself over
multiple transactions.


Necessary action:

* identify and move all funds stored using SecureRandom()

* rotate all key material generated by, or has come into contact
with any piece of software using SecureRandom()

* do not write cryptographic tools in non-type safe languages

* don't take the output of a CSPRNG and pass it through RC4

-
3CJ99vSipFi9z11UdbdZWfNKjywJnY8sT8


Login or Register to add favorites

File Archive:

April 2024

  • Su
  • Mo
  • Tu
  • We
  • Th
  • Fr
  • Sa
  • 1
    Apr 1st
    10 Files
  • 2
    Apr 2nd
    26 Files
  • 3
    Apr 3rd
    40 Files
  • 4
    Apr 4th
    6 Files
  • 5
    Apr 5th
    26 Files
  • 6
    Apr 6th
    0 Files
  • 7
    Apr 7th
    0 Files
  • 8
    Apr 8th
    22 Files
  • 9
    Apr 9th
    14 Files
  • 10
    Apr 10th
    10 Files
  • 11
    Apr 11th
    13 Files
  • 12
    Apr 12th
    14 Files
  • 13
    Apr 13th
    0 Files
  • 14
    Apr 14th
    0 Files
  • 15
    Apr 15th
    30 Files
  • 16
    Apr 16th
    10 Files
  • 17
    Apr 17th
    22 Files
  • 18
    Apr 18th
    45 Files
  • 19
    Apr 19th
    0 Files
  • 20
    Apr 20th
    0 Files
  • 21
    Apr 21st
    0 Files
  • 22
    Apr 22nd
    0 Files
  • 23
    Apr 23rd
    0 Files
  • 24
    Apr 24th
    0 Files
  • 25
    Apr 25th
    0 Files
  • 26
    Apr 26th
    0 Files
  • 27
    Apr 27th
    0 Files
  • 28
    Apr 28th
    0 Files
  • 29
    Apr 29th
    0 Files
  • 30
    Apr 30th
    0 Files

Top Authors In Last 30 Days

File Tags

Systems

packet storm

© 2022 Packet Storm. All rights reserved.

Services
Security Services
Hosting By
Rokasec
close