exploit the possibilities
Home Files News &[SERVICES_TAB]About Contact Add New

Ubuntu Security Notice USN-1164-1

Ubuntu Security Notice USN-1164-1
Posted Jul 6, 2011
Authored by Ubuntu | Site security.ubuntu.com

Ubuntu Security Notice 1164-1 - Thomas Pollet discovered that the RDS network protocol did not check certain iovec buffers. A local attacker could exploit this to crash the system or possibly execute arbitrary code as the root user. Dan Rosenberg discovered that the CAN protocol on 64bit systems did not correctly calculate the size of certain buffers. A local attacker could exploit this to crash the system or possibly execute arbitrary code as the root user. Various other issues were also addressed.

tags | advisory, arbitrary, local, root, protocol
systems | linux, ubuntu
advisories | CVE-2010-4081, CVE-2010-3865, CVE-2010-3874, CVE-2010-3875, CVE-2010-3876, CVE-2010-3877, CVE-2010-3880, CVE-2010-4080, CVE-2010-4081, CVE-2010-4082, CVE-2010-4083, CVE-2010-4157, CVE-2010-4164, CVE-2010-4248, CVE-2010-4258, CVE-2010-4342, CVE-2010-4346, CVE-2010-4527, CVE-2010-4529, CVE-2010-4565, CVE-2010-4655, CVE-2010-4656, CVE-2011-0463, CVE-2011-0521, CVE-2011-0695, CVE-2011-0711, CVE-2011-0712, CVE-2011-1017
SHA-256 | 4e4395012a3efacb0412aff2ad1192af5495aeffbe292f807d0de267e1af68f2

Ubuntu Security Notice USN-1164-1

Change Mirror Download
==========================================================================
Ubuntu Security Notice USN-1164-1
July 06, 2011

linux-fsl-imx51 vulnerabilities
==========================================================================

A security issue affects these releases of Ubuntu and its derivatives:

- Ubuntu 10.04 LTS

Summary:

Multiple kernel flaws have been fixed.

Software Description:
- linux-fsl-imx51: Linux kernel for IMX51

Details:

Thomas Pollet discovered that the RDS network protocol did not check
certain iovec buffers. A local attacker could exploit this to crash the
system or possibly execute arbitrary code as the root user. (CVE-2010-3865)

Dan Rosenberg discovered that the CAN protocol on 64bit systems did not
correctly calculate the size of certain buffers. A local attacker could
exploit this to crash the system or possibly execute arbitrary code as the
root user. (CVE-2010-3874)

Vasiliy Kulikov discovered that the Linux kernel X.25 implementation did
not correctly clear kernel memory. A local attacker could exploit this to
read kernel stack memory, leading to a loss of privacy. (CVE-2010-3875)

Vasiliy Kulikov discovered that the Linux kernel sockets implementation did
not properly initialize certain structures. A local attacker could exploit
this to read kernel stack memory, leading to a loss of privacy.
(CVE-2010-3876)

Vasiliy Kulikov discovered that the TIPC interface did not correctly
initialize certain structures. A local attacker could exploit this to read
kernel stack memory, leading to a loss of privacy. (CVE-2010-3877)

Nelson Elhage discovered that the Linux kernel IPv4 implementation did not
properly audit certain bytecodes in netlink messages. A local attacker
could exploit this to cause the kernel to hang, leading to a denial of
service. (CVE-2010-3880)

Dan Rosenberg discovered that the RME Hammerfall DSP audio interface driver
did not correctly clear kernel memory. A local attacker could exploit this
to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4080,
CVE-2010-4081)

Dan Rosenberg discovered that the VIA video driver did not correctly clear
kernel memory. A local attacker could exploit this to read kernel stack
memory, leading to a loss of privacy. (CVE-2010-4082)

Dan Rosenberg discovered that the semctl syscall did not correctly clear
kernel memory. A local attacker could exploit this to read kernel stack
memory, leading to a loss of privacy. (CVE-2010-4083)

James Bottomley discovered that the ICP vortex storage array controller
driver did not validate certain sizes. A local attacker on a 64bit system
could exploit this to crash the kernel, leading to a denial of service.
(CVE-2010-4157)

Dan Rosenberg discovered multiple flaws in the X.25 facilities parsing. If
a system was using X.25, a remote attacker could exploit this to crash the
system, leading to a denial of service. (CVE-2010-4164)

It was discovered that multithreaded exec did not handle CPU timers
correctly. A local attacker could exploit this to crash the system, leading
to a denial of service. (CVE-2010-4248)

Nelson Elhage discovered that the kernel did not correctly handle process
cleanup after triggering a recoverable kernel bug. If a local attacker were
able to trigger certain kinds of kernel bugs, they could create a specially
crafted process to gain root privileges. (CVE-2010-4258)

Nelson Elhage discovered that Econet did not correctly handle AUN packets
over UDP. A local attacker could send specially crafted traffic to crash
the system, leading to a denial of service. (CVE-2010-4342)

Tavis Ormandy discovered that the install_special_mapping function could
bypass the mmap_min_addr restriction. A local attacker could exploit this
to mmap 4096 bytes below the mmap_min_addr area, possibly improving the
chances of performing NULL pointer dereference attacks. (CVE-2010-4346)

Dan Rosenberg discovered that the OSS subsystem did not handle name
termination correctly. A local attacker could exploit this crash the system
or gain root privileges. (CVE-2010-4527)

Dan Rosenberg discovered that IRDA did not correctly check the size of
buffers. On non-x86 systems, a local attacker could exploit this to read
kernel heap memory, leading to a loss of privacy. (CVE-2010-4529)

Dan Rosenburg discovered that the CAN subsystem leaked kernel addresses
into the /proc filesystem. A local attacker could use this to increase the
chances of a successful memory corruption exploit. (CVE-2010-4565)

Kees Cook discovered that some ethtool functions did not correctly clear
heap memory. A local attacker with CAP_NET_ADMIN privileges could exploit
this to read portions of kernel heap memory, leading to a loss of privacy.
(CVE-2010-4655)

Kees Cook discovered that the IOWarrior USB device driver did not correctly
check certain size fields. A local attacker with physical access could plug
in a specially crafted USB device to crash the system or potentially gain
root privileges. (CVE-2010-4656)

Goldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly
clear memory when writing certain file holes. A local attacker could
exploit this to read uninitialized data from the disk, leading to a loss of
privacy. (CVE-2011-0463)

Dan Carpenter discovered that the TTPCI DVB driver did not check certain
values during an ioctl. If the dvb-ttpci module was loaded, a local
attacker could exploit this to crash the system, leading to a denial of
service, or possibly gain root privileges. (CVE-2011-0521)

Jens Kuehnel discovered that the InfiniBand driver contained a race
condition. On systems using InfiniBand, a local attacker could send
specially crafted requests to crash the system, leading to a denial of
service. (CVE-2011-0695)

Dan Rosenberg discovered that XFS did not correctly initialize memory. A
local attacker could make crafted ioctl calls to leak portions of kernel
stack memory, leading to a loss of privacy. (CVE-2011-0711)

Rafael Dominguez Vega discovered that the caiaq Native Instruments USB
driver did not correctly validate string lengths. A local attacker with
physical access could plug in a specially crafted USB device to crash the
system or potentially gain root privileges. (CVE-2011-0712)

Timo Warns discovered that the LDM disk partition handling code did not
correctly handle certain values. By inserting a specially crafted disk
device, a local attacker could exploit this to gain root privileges.
(CVE-2011-1017)

Julien Tinnes discovered that the kernel did not correctly validate the
signal structure from tkill(). A local attacker could exploit this to send
signals to arbitrary threads, possibly bypassing expected restrictions.
(CVE-2011-1182)

Dan Rosenberg discovered that MPT devices did not correctly validate
certain values in ioctl calls. If these drivers were loaded, a local
attacker could exploit this to read arbitrary kernel memory, leading to a
loss of privacy. (CVE-2011-1494, CVE-2011-1495)

Tavis Ormandy discovered that the pidmap function did not correctly handle
large requests. A local attacker could exploit this to crash the system,
leading to a denial of service. (CVE-2011-1593)

Vasiliy Kulikov discovered that the AGP driver did not check certain ioctl
values. A local attacker with access to the video subsystem could exploit
this to crash the system, leading to a denial of service, or possibly gain
root privileges. (CVE-2011-1745, CVE-2011-2022)

Vasiliy Kulikov discovered that the AGP driver did not check the size of
certain memory allocations. A local attacker with access to the video
subsystem could exploit this to run the system out of memory, leading to a
denial of service. (CVE-2011-1746, CVE-2011-1747)

Oliver Hartkopp and Dave Jones discovered that the CAN network driver did
not correctly validate certain socket structures. If this driver was
loaded, a local attacker could crash the system, leading to a denial of
service. (CVE-2011-1748)

Update instructions:

The problem can be corrected by updating your system to the following
package versions:

Ubuntu 10.04 LTS:
linux-image-2.6.31-609-imx51 2.6.31-609.26

After a standard system update you need to reboot your computer to make
all the necessary changes.

ATTENTION: Due to an unavoidable ABI change the kernel updates have
been given a new version number, which requires you to recompile and
reinstall all third party kernel modules you might have installed. If
you use linux-restricted-modules, you have to update that package as
well to get modules which work with the new kernel version. Unless you
manually uninstalled the standard kernel metapackages (e.g. linux-generic,
linux-server, linux-powerpc), a standard system upgrade will automatically
perform this as well.

References:
http://www.ubuntu.com/usn/usn-1164-1
CVE-2010-3865, CVE-2010-3874, CVE-2010-3875, CVE-2010-3876,
CVE-2010-3877, CVE-2010-3880, CVE-2010-4080, CVE-2010-4081,
CVE-2010-4082, CVE-2010-4083, CVE-2010-4157, CVE-2010-4164,
CVE-2010-4248, CVE-2010-4258, CVE-2010-4342, CVE-2010-4346,
CVE-2010-4527, CVE-2010-4529, CVE-2010-4565, CVE-2010-4655,
CVE-2010-4656, CVE-2011-0463, CVE-2011-0521, CVE-2011-0695,
CVE-2011-0711, CVE-2011-0712, CVE-2011-1017, CVE-2011-1182,
CVE-2011-1494, CVE-2011-1495, CVE-2011-1593, CVE-2011-1745,
CVE-2011-1746, CVE-2011-1747, CVE-2011-1748, CVE-2011-2022

Package Information:
https://launchpad.net/ubuntu/+source/linux-fsl-imx51/2.6.31-609.26


Login or Register to add favorites

File Archive:

March 2024

  • Su
  • Mo
  • Tu
  • We
  • Th
  • Fr
  • Sa
  • 1
    Mar 1st
    16 Files
  • 2
    Mar 2nd
    0 Files
  • 3
    Mar 3rd
    0 Files
  • 4
    Mar 4th
    32 Files
  • 5
    Mar 5th
    28 Files
  • 6
    Mar 6th
    42 Files
  • 7
    Mar 7th
    17 Files
  • 8
    Mar 8th
    13 Files
  • 9
    Mar 9th
    0 Files
  • 10
    Mar 10th
    0 Files
  • 11
    Mar 11th
    15 Files
  • 12
    Mar 12th
    19 Files
  • 13
    Mar 13th
    21 Files
  • 14
    Mar 14th
    38 Files
  • 15
    Mar 15th
    15 Files
  • 16
    Mar 16th
    0 Files
  • 17
    Mar 17th
    0 Files
  • 18
    Mar 18th
    10 Files
  • 19
    Mar 19th
    32 Files
  • 20
    Mar 20th
    46 Files
  • 21
    Mar 21st
    16 Files
  • 22
    Mar 22nd
    13 Files
  • 23
    Mar 23rd
    0 Files
  • 24
    Mar 24th
    0 Files
  • 25
    Mar 25th
    12 Files
  • 26
    Mar 26th
    31 Files
  • 27
    Mar 27th
    19 Files
  • 28
    Mar 28th
    0 Files
  • 29
    Mar 29th
    0 Files
  • 30
    Mar 30th
    0 Files
  • 31
    Mar 31st
    0 Files

Top Authors In Last 30 Days

File Tags

Systems

packet storm

© 2022 Packet Storm. All rights reserved.

Services
Security Services
Hosting By
Rokasec
close