exploit the possibilities
Home Files News &[SERVICES_TAB]About Contact Add New

systemd Local Privilege Escalation

systemd Local Privilege Escalation
Posted Jan 31, 2018
Authored by Michael Orlitzky

systemd (systemd-tmpfiles) versions prior to 236 suffer from an fs.protected_hardlinks=0 local privilege escalation vulnerability.

tags | exploit, local
advisories | CVE-2017-18078
SHA-256 | ab5c7f27e35d1f4741577e57058839ae024c0d913dfc8c629d2aad07f55c2130

systemd Local Privilege Escalation

Change Mirror Download
Product: systemd (systemd-tmpfiles)
Versions-affected: 236 and earlier
Author: Michael Orlitzky
Fixed-in: commit 5579f85 , version 237
Bug-report: https://github.com/systemd/systemd/issues/7736
Acknowledgments: Lennart Poettering who, instead of calling me an idiot
for not realizing that systemd enables fs.protected_hardlinks by
default, went out of his way to harden the non-default configuration.


== Summary ==

Before version 237, the systemd-tmpfiles program will change the
permissions and ownership of hard links. If the administrator disables
the fs.protected_hardlinks sysctl, then an attacker can create hard
links to sensitive files and subvert systemd-tmpfiles, particularly
with "Z" type entries.

Systemd as PID 1 with the default fs.protected_hardlinks=1 is safe.


== Details ==

When running as PID 1, systemd enables the fs.protected_hardlinks
sysctl by default; that prevents an attacker from creating hard links
to files that he can't write to. If, however, the administrator should
decide to disable that sysctl, then hard links may be created to any
file (on the same filesystem).

Before version 237, the systemd-tmpfiles program will voluntarily
change the permissions and ownership of a hard link, and that is
exploitable in a few scenarios. The most problematic and easiest to
exploit is the "Z" type tmpfiles.d entry, which changes ownership and
permissions recursively. For an example, consider the following
tmpfiles.d entries,

d /var/lib/systemd-exploit-recursive 0755 mjo mjo
Z /var/lib/systemd-exploit-recursive 0755 mjo mjo

Whenever systemd-tmpfiles is run, those entries make mjo the owner of
everything under and including /var/lib/systemd-exploit-recursive. After
the first run, mjo can create a hard link inside that directory pointing
to /etc/passwd. The next run (after a reboot, for example) changes the
ownership of /etc/passwd.

A proof-of-concept can be run from the systemd source tree, using
either two separate terminals or sudo:

root # sysctl -w fs.protected_hardlinks=0
root # sysctl -w kernel.grsecurity.linking_restrictions=0
root # ./build/systemd-tmpfiles --create
mjo $ ln /etc/passwd /var/lib/systemd-exploit-recursive/x
root # ./build/systemd-tmpfiles --create
mjo $ /bin/ls -l /etc/passwd
-rwxr-xr-x 2 mjo mjo 1504 Dec 20 14:27 /etc/passwd

More elaborate exploits are possible, and not only the "Z" type is
vulnerable.


== Resolution ==

The recursive change of ownership/permissions does not seem to be safely
doable without fs.protected_hardlinks enabled.

In version 237 and later, systemd-tmpfiles calls fstatat() immediately
after obtaining a file descriptor from open():

fd = open(path, O_NOFOLLOW|O_CLOEXEC|O_PATH);
if (fd < 0) {
...
}
if (fstatat(fd, "", &st, AT_EMPTY_PATH) < 0)

The st->st_nlink field is then checked to determine whether or not fd
describes a hard link. If it does, the ownership/permissions are not
changed, and an error is displayed:

if (hardlink_vulnerable(&st)) {
log_error("Refusing to set permissions on hardlink...", path);
return -EPERM;
}

There is still a tiny window between open() and fstatat() where the
attacker can fool this countermeasure by removing an existing hard
link to, say, /etc/passwd. In that case, st->st_nlink will be 1, but
fd still references /etc/passwd. The attack succeeds, but is much
harder to do, and the window is as narrow as possible. More to the
point, it seems unavoidable when implementing the tmpfiles.d
specification.


== Mitigation ==

Leave the fs.protected_hardlinks sysctl enabled


Login or Register to add favorites

File Archive:

July 2024

  • Su
  • Mo
  • Tu
  • We
  • Th
  • Fr
  • Sa
  • 1
    Jul 1st
    27 Files
  • 2
    Jul 2nd
    10 Files
  • 3
    Jul 3rd
    35 Files
  • 4
    Jul 4th
    27 Files
  • 5
    Jul 5th
    18 Files
  • 6
    Jul 6th
    0 Files
  • 7
    Jul 7th
    0 Files
  • 8
    Jul 8th
    28 Files
  • 9
    Jul 9th
    44 Files
  • 10
    Jul 10th
    24 Files
  • 11
    Jul 11th
    25 Files
  • 12
    Jul 12th
    11 Files
  • 13
    Jul 13th
    0 Files
  • 14
    Jul 14th
    0 Files
  • 15
    Jul 15th
    28 Files
  • 16
    Jul 16th
    6 Files
  • 17
    Jul 17th
    34 Files
  • 18
    Jul 18th
    6 Files
  • 19
    Jul 19th
    34 Files
  • 20
    Jul 20th
    0 Files
  • 21
    Jul 21st
    0 Files
  • 22
    Jul 22nd
    19 Files
  • 23
    Jul 23rd
    17 Files
  • 24
    Jul 24th
    47 Files
  • 25
    Jul 25th
    0 Files
  • 26
    Jul 26th
    0 Files
  • 27
    Jul 27th
    0 Files
  • 28
    Jul 28th
    0 Files
  • 29
    Jul 29th
    0 Files
  • 30
    Jul 30th
    0 Files
  • 31
    Jul 31st
    0 Files

Top Authors In Last 30 Days

File Tags

Systems

packet storm

© 2022 Packet Storm. All rights reserved.

Services
Security Services
Hosting By
Rokasec
close